
NEW METHOD FOR DETERMINATION OF THERMOPHYSICAL PROPERTY 

COMPLEXES OF LIQUIDS AT HIGH STATE PARAMETERS 
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A high-speed nonsteady-state method for measurement of thermophysical proper- 
ties of liquids at high state parameters is developed. 

Several methods are known for the measurement of specific heat {i-4] and thermal conduc- 
tivity [i, 5] of liquids at high pressure in the monotonic heating regime, the fundamentals 
of which are described in [6]. These methods have been employed to measure the thermal 
conductivity and specific heat of various classes of liquids at high pressures and temper- 
atures. However, together with their well-known advantages, those methods possess a number 
of shortcomings. 

In [i, 2], to determine the specific heat Cp the amount of heat absorbed by the liquid 
was determined by a heat meter (measuring the liquid under study or air). Then to calculate 
Cp it was necessary to know the thermal conductivity coefficient of the heat meter material. 
However, available thermal conductivity data have an uncertainty of more than 2%, which is 
introduced into the specific heat measurement. Moreover, the high ballast heat capacity of 
the calorimeter has a negative effect on experimental accuracy [2]. Because of this impulse- 
dynamic methods were then used [3, 4]; an adiabatic calorimeter with direct continuous heat- 
ing of the specimen eliminated the shortcomings mentioned above. 

However, the c-calorimeter and A-calorimeter used with the monotonic heating method~ 
still have shortcomings, namely: 

I. Severe Requirements as to Uniformity of the Temperature Field on the Surfaces of the 
Core and Shell~ Which Are Impossible to Achieve with External Heating of the Autoclave. Fur- 
thermore, with increase in autoclave temperature this nonuniformity increases. Thus, experi- 
ments have shown that at t = 200~ for a copper autoclave the nonuniformity may be as high as 
0.5 ~ Since the nonuniformity depends on the state of the external calorimeter isolation, 
the temperature gradient along the autoclave, the material and dimensions of conducting 
wires and high-pressure tubes for the thermocouples, etc., its theoretical calculation is 
difficult. 

To generate a mean value of temperature difference experimentally, [4] used a 100-junc- 
tion thermobattery, which complicated the construction of the measurement cell. 

2. Impossibility of Repeating Individual Experimental Points Which Originally Appeared 
Unreliable to the Experimenter. Since the method is dynamic, the experimental temperature 
must change with time. To obtain a desired state in the material, the experiment must be 
repeated from the beginning. 

3~ Necessity of Intr0ducing into the Computation Equation Corrections for Vari@bility 
of the Heating Rate and Physical Properties of the Liquid. With poor autoclave insulation 
and high temperatures such corrections can be significant. 

4. The Impossibility of Determining the Entire Complex of Thermophysical Properties 
from Data of a Single Experiment. In [i] a two-cell device of complex construction was pro- 
posed for simultaneous measurement of the thermal conductivity coefficient and the specific 
heat (Cp). 

5. The Necessity of Maintaining Constant Pressure in the Vessel over the Course of the 
Entire Experiment to Obtain Isobaric Specific Heat. In [i] constancy of pressure was 
achieved by inclusion of a buffer volume and high pressure gas reservoir in the hydraulic 
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Fig. 2. Measurement cell temperature vs 
time. 

system, while [3] achieved this result by automatic pressure regulation in the hydraulic 
press. 

6. Necessity of Determining Thermmeter Temperature Difference to a HighAccuracy. At 
low values of this difference the problem becomes more complicated. 

7. The High Value of the Initial Nonsteady-State of the Thermal Regime~ Sometimes Reach- 
ing 30-50 =. This does not permit testing of the apparatus at room temperature, at which the 
state of the device is more uniform and subject to control. 

8. The Possibility of Change in the Chemical Structure of Some Organic Liquids (for ex- 
ample, olefins) Due to Multiple Heating to the Maximum Experimental Temperature and Cooling 
to the Minimum Temperature. 

To eliminate these shortcomings we propose an impulsive-regular regime method, which 
permits determination of specific heat c , thermal conductivity, and thermal diffusivity of 
liquids (including electrolytes) at highPpressures and temperatures. 

Figure 1 shows a schematic diagram of the calorimeter. The liquid to be studied 1 is 
located within a thin metallic shell 2 (the ampul), the temperature of which is changed dur- 
ing the course of the experiment. The shell is surrounded by a thin layer 3 (heat meter) 
of the liquid under study, contained in a massive metallic high pressure autoclave 4. Along 
the axis of the ampul is the heat source 5, generating power W, separated from the liquid by 
a thin metallic high pressure tube 6. When necessary cold atmospheric air or liquid nitro- 
gen 7 can be passed along the tube to cool the ampul. 

Measurements are performed in the following manner. A steady state thermal regime is 
established in the autoclave at the experimental temperature and pressure. Cold air is 
passed through the tube (3 • 1.8 mm) (if the autoclave temperature is high), or liquid nitro- 
gen may be used (if the autoclave is at a moderate temperature). The ampul temperature t 
then decreases to some temperature head 0' = t a - t as compared to the autoclave temperature 
(Fig. 2). One can say that the temperature decrease occurs along the exponential curve I. 
The maximum value of 0' is approximately 0.5-1.0 ~ Then the coolant supply is terminated, 
and an electrical heater (wire 0.2 mm in diameter) supplying a constant power W = const 
(2-4 W dependent on liquid properties) is switched on at the same time. The ampul temper- 
ature increases along curve 2, asymptotically approaching 0"ma x = tma x - t a, the maximum 
ampul temperature head (approximately 0.5-1.0~ With the exception of a short lower segment 
curve 2 follows a strictly specific law, which we may term the heating rate m. The temper- 
ature curve may be repeated (curves 3, 4, etc.) if necessary. 

Determination of the isobaric specific heat, thermal conductivity coefficient, and ther- 
mal diffusivity then reduce to measurement of the heating rate at points b and c of heating 
curve 2. 

We will now derive a computation equation for determining the thermophysical properties 
of the liquid. To derive the relationships for specific heat Cp we first assume: i) the spe- 
cific heat (overall) of the autoclave is extremely high, and remains constant over the 
time of the experiment; 2) there is no temperature head across the dividing surfaces of the 
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measurement cell; 3) there is no heat loss along wires and tubes; 4) the liquid layer thick- 
ness is significantly less than the diameter of the ampul; 5) the ballast heat capacity is 
negligibly small; 6) during the insignificant temperature change of the ampul the pressure 
remains constant, so that the measured specific heat is isobaric. 

From the thermal balance equation of the measurement cell we have 

cons[=  W=-Vpcp at ~FI( O_~_r ) a--~- - -  a," (1 )  

! 
During the measurement the ampul temperature changes along curve 2 of Fig. 2 from @min 

to 8"max, intersecting the line t a (horizontal) at the point b. Here the direction of the 
thermal flux q changes. Thus, at point b q = 0 and we have adiabatic heating of the liquid, 
so that (St/Sr)Rl = 0 and 

W= Vc'pb ~ (2) 

where b ~ = (St/3T) b is the heating rate at point b. 

With consideration of the ballast provided by the ampul and other elements and heat 
loss to the heater and thermocouple leads, as well as along the tube, Eq. (2) transforms to 

W--W' = Vc'pb ~ + Cb b~ (3) 
whence 

= c . ( 4 )  G - f  b0 
The a n n u l a r  l i q u i d  l a y e r  s u r r o u n d i n g  t h e  ampul a l s o  p a r t i c i p a t e s  in  t h e  h e a t i n g  p r o c e s s .  

T h e r e f o r e ,  a c c o r d i n g  t o  [ 7 ] ,  t o  t h e  volume V we must  i n t r o d u c e  t h e  c o r r r e c t i o n :  

W--W' 
Cb 

C~, = b~ 

E q u a t i o n  (5 )  i s  v a l i d  f o r  t h e  c a s e  ~. >> R 1 (where  ~ i s  t h e  ampul l e n g t h ) .  I f  ~ i s  r e l a -  
t i v e l y  s m a l l ,  t h e n  w i t h  c o n s i d e r a t i o n  o f  t h e  h e a t  c a p a c i t y  o f  t h e  end l a y e r s  Eq. (5 )  t a k e s  
on t h e  form 

W - - W '  
Cb 

Cp ,~ b~ 
26 2 6 ' )  (6 )  

V 
1 + ,.,.,1+~ 3l ] 

In  d e t e r m i n i n g  b 0 we may use  t h e  e x p r e s s i o n  b 0 = ht /A~ in  t h e  v i c i n i t y  o f  t h e  p o i n t  b 
f o r  a b r i e f  t i m e  i n t e r v a l  &~. Here  At must  be c e n t e r e d  a b o u t  t h e  p o i n t  b. 

We w i l l  d e r i v e  t h e  c o m p u t a t i o n  e q u a t i o n  f o r  t h e r m a l  c o n d u c t i v i t y  w i t h  t h e  f o l l o w i n g  a s -  
s u m p t i o n s :  1) a l l  a s s u m p t i o n s  made in  d e r i v i n g  t h e  s p e c i f i c  h e a t  e q u a t i o n  remain  in  f o r c e ;  
2) t h e  c y l i n d r i c a l  ( i n o r g a n i c )  s u r f a c e s  have  no e c c e n t r i c i t y ;  3) h e a t  f rom t h e  c o r e  i s  
t r a n s f e r r e d  t h r o u g h  t h e  s t u d i e d  l a y e r ,  o n l y  by c o n d u c t i o n ;  4) t h e  l i q u i d s  f i l l i n g  t h e  ampul 
and a n n u l a r  gap a r e  d i f f e r e n t ,  w i t h  t h e  volume h e a t  c a p a c i t y  o f  t h e  f i r s t  s i g n i f i c a n t l y  ex-  
c e e d i n g  t h a t  o f  t h e  s econd  c 1' > c ' .  

We now have  t h e  t h e r m a l  b a l a n c e  e q u a t i o n  f o r  t h e  c o r e ,  Eq. ( 1 ) ,  where  W i s  t h e  e l e c t r i -  
c a l  power ,  Vpcp S t /ST = YC'p 8 t / 8 ~  i s  t h e  t h e r m a l  power a b s o r b e d  by t h e  c o r e ,  X F l ( S t / S r ) R 1  
i s  t h e  t h e r m a l  f l u x  t h r o u g h  t h e  a n n u l a r  l a y e r  u n d e r  s t u d y .  

We will first define 8t/Sz and (St/Sr)R I. It follows from curve 2 of Fig. 2 that after 
regularization of the system (double cylinder) both the core temperature and the temper- 
ature of the annular layer change strictly by the same law, determined essentially by the 
system heating rate m. 

Then for the core 

0 c=  OCax [1 - -  exp (--re'v)], ( 7 ) 

where 0 c = t c - tmi n is the change in core temperature from the initial heating temperature 
tmin; 0Cax is the maximum change in core temperature (at the moment the steady-state temper- 
ature regime sets in). It is assumed here that the core temperature field is uniform. 

1207 



The temperature of the liquid layer under study is defined by the equation 

0 s = Bx - -  B~ [Jo (~r) + DYo (~r)] exp (--m~), (8 )  

where pm~/'m7'aa; Bx, B2, D are constants determined by the boundary conditions and physical pro- 
perties of the liquid. At ~ = oo(steady-state regime) 

In k Rx 
where  k = Ra/R~ i s  t h e  r a t i o  o f  t h e  r a d i i  o f  t h e  a n n u l a r  l a y e r s .  At r = R 2 0 E  = 0 ' m i n ;  a t  
r : R z 0s = 0 c. 

From the first boundary condition 

since BI(R 2) = O'mi n, 

Bz CRy) -- B, [d o (~R,) + DY o (~R~)] exp (--m~) = O" 
r n i n  ~ 

o r  

Jo (~R,) + DYo (~R,) = o, 

D = Jo (~R~) 
Yo (v,R~) 

From the second condition 

- -  ~ - -  exp (--m~)]. Bi (R0 B2 [d o (~R,) + DYo (~RI)] exp (--m*) = 0ma x [1 

S i n c e  BI(R x) = c Oma x , 

C 

O~ax 

Then from Eq. (8 )  

C 
0 =0max 

From Eq. (7 )  we f i n d  

and from Eq. (9) 

ot 

\ Or IR, 

c �9 0 c 
0max - -  0rain in r max[do (Ixr) + DY0(lzr)] exp (--rna:) ( 9 ) 

In k RI do (t~RI) + OYo ([~RO 

�9 C a0 c = 0t = 0max m exp (--mz), (10)  
aT a~ 

R~ Ink 

OCsx p [J~ (l~R~) + DYI (~Rx)] 
+ Jo (pR~) + DYo (pR~) 

exp (--m,).  ( 11 ) 

With consideration of Eqs. (I0), 

2X 
= Plc~O~axmexp(--m~ + RI" 

At z = ~ f rom Eq. (13)  w e h a v e  

After simplification Eq. (i) takes on the form 

where  ~ = c o n s t  = W/(zR~s i s  t h e  s p e c i f i c  t h e r m a l  power ;  0z,  c l  a r e  t h e  d e n s i t y  and s p e c i f i c  
h e a t  o f  t h e  c o r e  m a t e r i a l .  

( 1 1 ) ,  we o b t a i n  f rom Eq, (12)  

0 e - -  O" 2~OCxl ~ [dx ([~Rx) + DY~ (l~Rx)] 
max mitt - - ,  exp (--m~). (13)  

Rx Ink R~ [do (~R1) + DYo (L*Rx)] 

~o-- R1 R l lnk  (14) 

Therefore, it follows from Eq. (13) that 

2Z0~eax~ [A (~R1) + Or1  (~R01 
P~e~OCaxm = R, [Jo (~R1) + Dro (~R0] 
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since ~ = const. After substitution of the value of D in this expression we define the ther- 
mal conductivity coefficient of the layer under study: 

Using the properties of expansion in Bessel functions and applying the method of succes- 
sive approximations [7], Eq. (15) can be transformed to the form 

1~ = plclm6R17 ( 1 -t- 
2 \ 

26 co ) 
3RI clpl ' (16) 

where 6 = R 2 - RI; y = RI/(R 2-RI) in k. The expression in brackets is the correction for 
heat capacity of the layer under study, which for liquids reaches up to 2% (if 6 = 0.05 cm, 
RI = 1.0 cm). 

If the liquid in the core and annular layer are one and the same, then from Eq. (16) we 
obtain 

)~= ocmOR17 { 1 + 26 ~. 
2 \ 3R1 j 

(17) 

With consideration of core heat exchange through the end surfaces 

1~_ pcm6R172 ( 1 -t- ___~+26 26'31]. ~ (18) 

The value of the volume heat capacity pc = c' can be defined from Eq. (6), while the heating 
rate is determined experimentally. 

With the aid of Eq. (18) we can write a computation equation for calculation of the ther- 
mal diffusivity coefficient 

a - -  m6Rt? ( 1  + 26 26' ] 

Equat ion (15) was ob ta ined  f o r  the  case  of  an i n f i n i t e  c y l i n d e r ,  where g >> R l .  For a 
f i n i t e  c y l i n d e r  we have {8] 

3~ = pcR,m go (~RI) Yo (pR~) -- Jo (pRi) }To (p~R1) 
2 ] / f  ~2 

- -  l -  G- [J~ (~R1) Y0 (~Ri)--J0 (~Ri) Y1 (~R1)] ( 2 0 )  

C a l c u l a t i o n s  show t h a t  a t  ~ = 10 cm, R 1 = 1 cm, 6 = 0.05 cm the  e r r o r  of  Eq. (15) wi th  
r e s p e c t  to  Eq. (20) comprises  on ly  0.13%, i . e . ,  Eq. (15) g ives  a somewhat reduced va lue :  

1 I 
-- .,~, 1,0013. 

r~ ~" / n 2 R~ lnk 
I /1  iv P 1- t '  2 

Thus, i t  can be s t a t e d  t h a t  Eqs. (18) ,  (19) a r e  s u f f i c i e n t l y  a c c u r a t e  f o r  c a l c u l a t i o n  
of ~ and a. Finally, these equations take on the form 

1~ = (ppc6mR172 ( 1 + _f~_~ 26'31 J ~ --B,  

a -- 'P6mR17~ ( 1 + _~t+26 26'3i / ) - -B,  

(21) 

(22) 

where ~ is a coefficient which considers the specific heat of the core shell and other metal- 
lic elements, 9 = (Vpc + Cb)/Vcpc; B is a correction for heat loss along wires, tube, and 
the centering pins. 

In addition, it is necessary to consider the change in geometric dimensions of the cell 
as a function of temperature and pressure. 

Analysis of Eqs. (6), (21), (22) shows that the uncertainty in determination of isobaric 
specific heat, and the thermal conductivity and diffusivity coefficients of liquids will de- 
pend on the uncertainty in determination of the geometric dimensions of the measurement cell, 
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the ballast heat capacity, the galvanometer needle displacement time, and errors involved 
in calculating the corrections for heat loss along the high pressure tube, positioning of 
the differential thermocouple junctions, etc. 

In our opinion, the most important of the corrections to the fundamental equations are 
the corrections for heat loss along the steel: tube 6 (see Fig. i) and for location of the 
thermocouple junctions. 

Methods and equations for calculating these corrections are complicated and will be 
considered in a separate study. 

For radial device construction and proper consideration of all possible corrections the 
uncertainty in determining isobaric specific heat should not exceed 1.5-2%, that in the 
thermal conductivity should be no more than 2-2.5%, and that in thermal diffusivity, 1-1.5%. 

For practical use of Eqs. (21), (22) it is necessary to determine the value of m ex- 
perimentally. Several methods of determining m are possible. 

Method One. From Eqs. (i0) and (7) at point b we have 

b ~ = mOCax exp ( - -m ' r fb )  , ( 2 3 )  

O" = 0  c - - 0  c e x p ( - - m % ) ,  
mill max max ( 2 4 )  

b u t  0 C a i  = 0 ' m i n  + 8"ma x ,  t h e n  f r o m  t h e  l a s t  e q u a t i o n  i t  f o l l o w s  t h a t  0"ma x = 0~a  x e x p ( - m ~ b ) .  

S u b s t i t u t i n g  t h e  l a s t  e x p r e s s i o n  i n  Eq.  ( 2 3 ) ,  we o b t a i n  

b 0 
m = - -  (25) 

0m,, 
This expression is convenient for determining m, if the quantity 0mCax is known. The value 

of b ~ has already been determined in calculating c' with Eq. (6), while 0"max = tmax - ta 
can be measured with a differential thermocouple in the steady-state regime. However, pre- 
cise determination of 0ma xc is difficult and requires a definite time for onset of the steady- 
state regime. 

Method Two. For the point b we have 

b o = m0ma x, 
for point c, 

a n d  a f t e r  s u b t r a c t i o n  o f  t h e  s e c o n d  e q u a t i o n  f r o m  t h e  f i r s t  we h a v e  

a n d  

b~ - -  b~ ( 2 6 )  m ~  ~ , 

where b c = (88/3~) is the heating rate at point c. Here definition of 0" c does not require 
a great deal of time, but does not have high accuracy. 

Method Three. If we measure temperature, for example, from tmax, then m can be deter- 
mined very easily. In addition, the accuracy of heating rate determination will be quite 
high due to its independence from the absolute value of e. Here 8 can be replaced by values 
of the scale divisions of the galvanometer used to fix the change in temperature difference 
between the core and autoclave. 

Equation (7) can be written in the following manner: 

0~a x - -  O = O~a x exp (--m~).  ( 2 7 )  

D e n o t i n g  O~a x - 0 c = v c ( a t  0 c = 0 0~a x = v ~ .  x )  we o b t a i n  v c = 0 S a x  e x p ( - m ~ ) .  Then  f o r  two 
neighboring points b' and b", in the interva~ between which the ~eating velocity b ~ is mea- 
sured, we obtain 

v~= 0~a x exp (--rex'), v~ = 0~a x exp (--mx~), 
or 

In % = In OC~x. - m~', In ~ = In OC~x- m~', 
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and finally, 

m (z" - -  v ' )  ~ In v" - -  In v" 
C C 

In v ~ - -  In v~ 
m = ( 2 8 )  

AT 

where A~ = T" - ~' is the time over which the temperature difference changes in the interval 
b' - b". It is convenient to use the galvanometer scale divisions, then 

l n N l - - l n N 2  
m . . . . . . . . . . .  ( 2 9 )  

Ax 

Use of Eq. (29) is quite convenient for practical determination of m. 

NOTATION 

ta, autoclave temperature; 8, temperature change; V, O, c , volume, density, and isobaric 
specific heat of material in ampul; i, thermal conductivity o~ heat meter material; FI, RI, 
area and radius of outer ampul surface; cp', volume isobaric specific heat of material; W', 
correction required for heat loss along c~nductive wires and tube; Cb, ballast heat capacity 
of ampul and other elements; 6, 6', thickness of side and end layers of liquid; a, thermal dif- 
fusivity; V c, core volume. 
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THEORY OF BIVACANCY CONTRIBUTION TO THE COEFFICIENT 

OF SELF-DIFFUSION IN MONATOMIC MOLECULAR CRYSTALS 

E. T. Bruk-Levinson and O. D. Chernetsov UDC 548.532.72 

On the basis of the statistical theory of a crystal with defects, we calculate 
the frequency of jumps of an atom for diffusion in the bivacancy mechanism. 
We obtain an expression for the contributions of different types of bivacancies 
to the coefficient of self-diffusion. Calculations are carried out for the spe- 
cial case of a Lennard-Jones 6-12 potential. 

The vacancy mechanism of diffusion assumes that the coefficient of self-diffusion is 
determined both by monovacancies as well as complex vacancies. Of the various vacancy 
clusters, the most important for diffusion are bivacancies, since the concentration of clus- 
ters containing a larger number of vacancies rapidly falls off with the number of vacancies. 

The known estimates of the contribution of bivacancies to self-diffusion lie in a rather 
wide range (see for example [i]). The difficulties of such estimates are explained by the 
fact that they are mostly in the form of independent calculations of two groups of parameters: 
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